Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cluster exchange reactivity of [2Fe-2S]-bridged heterodimeric BOLA1-GLRX5.

Identifieur interne : 000086 ( Main/Exploration ); précédent : 000085; suivant : 000087

Cluster exchange reactivity of [2Fe-2S]-bridged heterodimeric BOLA1-GLRX5.

Auteurs : Sambuddha Sen [États-Unis] ; Amber L. Hendricks [États-Unis] ; James A. Cowan [États-Unis]

Source :

RBID : pubmed:32542995

Abstract

Mitochondrial BOLA1 is known to form a [2Fe-2S] cluster-bridged heterodimeric complex with mitochondrial monothiol glutaredoxin GLRX5; however, the function of this heterodimeric complex is unclear. Some reports suggest redundant roles for BOLA1 and a related protein, BOLA3, with both involved in the maturation of [4Fe-4S] clusters in a subset of mitochondrial proteins. However, a later report on the structure of BOLA1-GLRX5 heterodimeric complex demonstrated a buried cluster environment and predicted a redox role instead of the cluster trafficking role suggested for the BOLA3-GLRX5 heterodimeric complex. Herein, we describe a detailed kinetic study of relative cluster exchange reactivity involving heterodimeric complex of BOLA1 with GLRX5. By the use of CD spectroscopy, it is demonstrated that [2Fe-2S]-bridged BOLA1-GLRX5 can be readily formed by cluster uptake from donors such as ISCU or [2Fe-2S](GS)4 complex, but not from ISCA1 or ISCA2. Rapid holo-formation following delivery from [2Fe-2S](GS)4 supports possible physiological relevance in the cellular labile iron pool. Holo [2Fe-2S] BOLA1-GLRX5 heterodimeric complex is incapable of donating cluster to apo protein acceptors, providing experimental support for a nontrafficking role. Finally, we report the formation and reactivity of the holo [2Fe-2S]-bridged BOLA1 homodimer (lacking a partner GLRX). While the holo-heterodimer is thermodynamically more stable, by contrast the holo BOLA1 homodimer does demonstrate facile cluster exchange reactivity.

DOI: 10.1111/febs.15452
PubMed: 32542995


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cluster exchange reactivity of [2Fe-2S]-bridged heterodimeric BOLA1-GLRX5.</title>
<author>
<name sortKey="Sen, Sambuddha" sort="Sen, Sambuddha" uniqKey="Sen S" first="Sambuddha" last="Sen">Sambuddha Sen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hendricks, Amber L" sort="Hendricks, Amber L" uniqKey="Hendricks A" first="Amber L" last="Hendricks">Amber L. Hendricks</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cowan, James A" sort="Cowan, James A" uniqKey="Cowan J" first="James A" last="Cowan">James A. Cowan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32542995</idno>
<idno type="pmid">32542995</idno>
<idno type="doi">10.1111/febs.15452</idno>
<idno type="wicri:Area/Main/Corpus">000044</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000044</idno>
<idno type="wicri:Area/Main/Curation">000044</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000044</idno>
<idno type="wicri:Area/Main/Exploration">000044</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cluster exchange reactivity of [2Fe-2S]-bridged heterodimeric BOLA1-GLRX5.</title>
<author>
<name sortKey="Sen, Sambuddha" sort="Sen, Sambuddha" uniqKey="Sen S" first="Sambuddha" last="Sen">Sambuddha Sen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hendricks, Amber L" sort="Hendricks, Amber L" uniqKey="Hendricks A" first="Amber L" last="Hendricks">Amber L. Hendricks</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cowan, James A" sort="Cowan, James A" uniqKey="Cowan J" first="James A" last="Cowan">James A. Cowan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The FEBS journal</title>
<idno type="eISSN">1742-4658</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mitochondrial BOLA1 is known to form a [2Fe-2S] cluster-bridged heterodimeric complex with mitochondrial monothiol glutaredoxin GLRX5; however, the function of this heterodimeric complex is unclear. Some reports suggest redundant roles for BOLA1 and a related protein, BOLA3, with both involved in the maturation of [4Fe-4S] clusters in a subset of mitochondrial proteins. However, a later report on the structure of BOLA1-GLRX5 heterodimeric complex demonstrated a buried cluster environment and predicted a redox role instead of the cluster trafficking role suggested for the BOLA3-GLRX5 heterodimeric complex. Herein, we describe a detailed kinetic study of relative cluster exchange reactivity involving heterodimeric complex of BOLA1 with GLRX5. By the use of CD spectroscopy, it is demonstrated that [2Fe-2S]-bridged BOLA1-GLRX5 can be readily formed by cluster uptake from donors such as ISCU or [2Fe-2S](GS)
<sub>4</sub>
complex, but not from ISCA1 or ISCA2. Rapid holo-formation following delivery from [2Fe-2S](GS)
<sub>4</sub>
supports possible physiological relevance in the cellular labile iron pool. Holo [2Fe-2S] BOLA1-GLRX5 heterodimeric complex is incapable of donating cluster to apo protein acceptors, providing experimental support for a nontrafficking role. Finally, we report the formation and reactivity of the holo [2Fe-2S]-bridged BOLA1 homodimer (lacking a partner GLRX). While the holo-heterodimer is thermodynamically more stable, by contrast the holo BOLA1 homodimer does demonstrate facile cluster exchange reactivity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32542995</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1742-4658</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The FEBS journal</Title>
<ISOAbbreviation>FEBS J</ISOAbbreviation>
</Journal>
<ArticleTitle>Cluster exchange reactivity of [2Fe-2S]-bridged heterodimeric BOLA1-GLRX5.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/febs.15452</ELocationID>
<Abstract>
<AbstractText>Mitochondrial BOLA1 is known to form a [2Fe-2S] cluster-bridged heterodimeric complex with mitochondrial monothiol glutaredoxin GLRX5; however, the function of this heterodimeric complex is unclear. Some reports suggest redundant roles for BOLA1 and a related protein, BOLA3, with both involved in the maturation of [4Fe-4S] clusters in a subset of mitochondrial proteins. However, a later report on the structure of BOLA1-GLRX5 heterodimeric complex demonstrated a buried cluster environment and predicted a redox role instead of the cluster trafficking role suggested for the BOLA3-GLRX5 heterodimeric complex. Herein, we describe a detailed kinetic study of relative cluster exchange reactivity involving heterodimeric complex of BOLA1 with GLRX5. By the use of CD spectroscopy, it is demonstrated that [2Fe-2S]-bridged BOLA1-GLRX5 can be readily formed by cluster uptake from donors such as ISCU or [2Fe-2S](GS)
<sub>4</sub>
complex, but not from ISCA1 or ISCA2. Rapid holo-formation following delivery from [2Fe-2S](GS)
<sub>4</sub>
supports possible physiological relevance in the cellular labile iron pool. Holo [2Fe-2S] BOLA1-GLRX5 heterodimeric complex is incapable of donating cluster to apo protein acceptors, providing experimental support for a nontrafficking role. Finally, we report the formation and reactivity of the holo [2Fe-2S]-bridged BOLA1 homodimer (lacking a partner GLRX). While the holo-heterodimer is thermodynamically more stable, by contrast the holo BOLA1 homodimer does demonstrate facile cluster exchange reactivity.</AbstractText>
<CopyrightInformation>© 2020 Federation of European Biochemical Societies.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sen</LastName>
<ForeName>Sambuddha</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-6079-0268</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hendricks</LastName>
<ForeName>Amber L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cowan</LastName>
<ForeName>James A</ForeName>
<Initials>JA</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-4686-6825</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AI072443</GrantID>
<Acronym>NH</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEBS J</MedlineTA>
<NlmUniqueID>101229646</NlmUniqueID>
<ISSNLinking>1742-464X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">BOLA</Keyword>
<Keyword MajorTopicYN="N">GLRX5</Keyword>
<Keyword MajorTopicYN="N">[2Fe-2S](GS)4 complex</Keyword>
<Keyword MajorTopicYN="N">glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">iron-sulfur cluster</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32542995</ArticleId>
<ArticleId IdType="doi">10.1111/febs.15452</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Santos JM, Freire P, Vicente M & Arraiano CM (1999) The stationary-phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Mol Microbiol 32, 789-798.</Citation>
</Reference>
<Reference>
<Citation>Couturier J, Wu HC, Dhalleine T, Pegeot H, Sudre D, Gualberto JM, Jacquot JP, Gaymard F, Vignols F & Rouhier N (2014) Monothiol glutaredoxin-BolA interactions: redox control of Arabidopsis thaliana BolA2 and SufE1. Mol Plant 7, 187-205.</Citation>
</Reference>
<Reference>
<Citation>Haack TB, Rolinski B, Haberberger B, Zimmermann F, Schum J, Strecker V, Graf E, Athing U, Hoppen T, Wittig I et al. (2013) Homozygous missense mutation in BOLA3 causes multiple mitochondrial dysfunctions syndrome in two siblings. J Inherit Metab Dis 36, 55-62.</Citation>
</Reference>
<Reference>
<Citation>Uzarska MA, Nasta V, Weiler BD, Spantgar F, Ciofi-Baffoni S, Saviello MR, Gonnelli L, Mühlenhoff U, Banci L & Lill R (2016) Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron-sulfur proteins. eLife 5, e16673.</Citation>
</Reference>
<Reference>
<Citation>Melber A, Na U, Vashisht A, Weiler BD & Lill R (2016) Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients. eLife 5.</Citation>
</Reference>
<Reference>
<Citation>Baker PR II, Friederich MW, Swanson MA, Shaikh T, Bhattacharya K, Scharer GH, Aicher J, Creadon-Swindell G, Geiger E, MacLean KN et al. (2014) Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain 137, 366-379.</Citation>
</Reference>
<Reference>
<Citation>Cameron JM, Janer A, Levandovskiy V, MacKay N, Rouault TA, Tong W-H, Ogilvie I, Shoubridge EA & Robinson BH (2011) Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am J Hum Genet 89, 486-495.</Citation>
</Reference>
<Reference>
<Citation>Nasta V, Giachetti A, Ciofi-Baffoni S & Banci L (2017) Structural insights into the molecular function of human [2Fe-2S] BOLA1-GRX5 and [2Fe-2S] BOLA3-GRX5 complexes. Biochim Biophys Acta 1861, 2119-2131.</Citation>
</Reference>
<Reference>
<Citation>Sen S, Rao B, Wachnowsky C & Cowan JA (2018) Cluster exchange reactivity of [2Fe-2S] cluster-bridged complexes of BOLA3 with monothiol glutaredoxins. Metallomics 10, 1282-1290.</Citation>
</Reference>
<Reference>
<Citation>Kumanovics A, Chen OS, Li L, Bagley D, Adkins EM, Lin H, Dingra NN, Outten CE, Keller G, Winge D et al. (2008) Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. J Biol Chem 283, 10276-10286.</Citation>
</Reference>
<Reference>
<Citation>Poor CB, Wegner SV, Li H, Dlouhy AC, Schuermann JP, Sanishvili R, Hinshaw JR, Riggs-Gelasco PJ, Outten CE & He C (2014) Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2. Proc Natl Acad Sci USA 111, 4043-4048.</Citation>
</Reference>
<Reference>
<Citation>Banci L, Camponeschi F, Ciofi-Baffoni S & Muzzioli R (2015) Elucidating the molecular function of human BOLA2 in GRX3-dependent anamorsin maturation pathway. J Am Chem Soc 137, 16133-16143.</Citation>
</Reference>
<Reference>
<Citation>Willems P, Wanschers BF, Esseling J, Szklarczyk R, Kudla U, Duarte I, Forkink M, Nooteboom M, Swarts H, Gloerich J et al. (2013) BOLA1 is an aerobic protein that prevents mitochondrial morphology changes induced by glutathione depletion. Antioxid Redox Sign 18, 129-138.</Citation>
</Reference>
<Reference>
<Citation>Ye H, Abdel-Ghany SE, Anderson TD, Pilon-Smits EA & Pilon M (2006) CpSufE activates the cysteine desulfurase CpNifS for chloroplastic Fe-S cluster formation. J Biol Chem 281, 8958-8969.</Citation>
</Reference>
<Reference>
<Citation>Yeung N, Gold B, Liu NL, Prathapam R, Sterling HJ, Willams ER & Butland G (2011) The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes. Biochemistry 50, 8957-8969.</Citation>
</Reference>
<Reference>
<Citation>Jia M, Sen S, Wachnowsky C, Fidai I, Cowan JA & Wysocki VH (2020) Characterization of [2Fe-2S]-cluster-bridged protein complexes and reaction intermediates by use of native mass spectrometric methods. Angew Chem Int Ed Engl 59, 6724-6728.</Citation>
</Reference>
<Reference>
<Citation>Li H, Mapolelo DT, Dingra NN, Naik SG, Lees NS, Hoffman BM, Riggs-Gelasco PJ, Huynh BH, Johnson MK & Outten CE (2009) The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry 48, 9569-9581.</Citation>
</Reference>
<Reference>
<Citation>Fidai I, Wachnowsky C & Cowan JA (2016) Mapping cellular Fe-S cluster uptake and exchange reactions - divergent pathways for iron-sulfur cluster delivery to human ferredoxins. Metallomics 8, 1283-1293.</Citation>
</Reference>
<Reference>
<Citation>Wachnowsky C, Fidai I & Cowan JA (2016) Cytosolic iron-sulfur cluster transfer-a proposed kinetic pathway for reconstitution of glutaredoxin 3. FEBS Lett 590, 4531-4540.</Citation>
</Reference>
<Reference>
<Citation>Wachnowsky C, Rao B, Sen S, Fries B, Howard CJ, Ottesen JJ & Cowan JA (2019) Reconstitution, characterization, and [2Fe-2S] cluster exchange reactivity of a holo human BOLA3 homodimer. J Biol Inorg Chem 24, 1035-1045.</Citation>
</Reference>
<Reference>
<Citation>Wachnowsky C, Fidai I & Cowan JA (2018) Iron-sulfur cluster biosynthesis and trafficking - impact on human disease conditions. Metallomics 10, 9-29.</Citation>
</Reference>
<Reference>
<Citation>Wu S-P, Wu G, Surerus KK & Cowan JA (2002) Iron−sulfur cluster biosynthesis. Kinetic analysis of [2Fe-2S] cluster transfer from holo ISU to apo Fd: role of redox chemistry and a conserved aspartate. Biochemistry 41, 8876-8885.</Citation>
</Reference>
<Reference>
<Citation>Xia B, Cheng H, Bandarian V, Reed GH & Markley JL (1996) Human ferredoxin: overproduction in Escherichia coli, reconstitution in vitro, and spectroscopic studies of iron−sulfur cluster ligand cysteine-to-serine mutants. Biochemistry 35, 9488-9495.</Citation>
</Reference>
<Reference>
<Citation>Li J, Ding S & Cowan JA (2013) Thermodynamic and structural analysis of human NFU conformational chemistry. Biochemistry 52, 4904-4913.</Citation>
</Reference>
<Reference>
<Citation>Sen S & Cowan JA (2017) Role of protein-glutathione contacts in defining glutaredoxin-3 [2Fe-2S] cluster chirality, ligand exchange and transfer chemistry. J Biol Inorg Chem 22, 1075-1087.</Citation>
</Reference>
<Reference>
<Citation>Qi W, Li J & Cowan JA (2013) Human ferredoxin-2 displays a unique conformational change. Dalton Trans 42, 3088-3091.</Citation>
</Reference>
<Reference>
<Citation>Sen S, Bonfio C, Mansy SS & Cowan JA (2018) Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe-2S] cluster optical spectra and transfer chemistry. J Biol Inorg Chem 23, 241-252.</Citation>
</Reference>
<Reference>
<Citation>Jones RN & Shimokoshi K (1983) Some observations on the resolution enhancement of spectral data by the method of self-deconvolution. J Appl Spectrosc 37, 59-67.</Citation>
</Reference>
<Reference>
<Citation>Kauppinen JK, Moffatt DJ, Mantsch HH & Cameron DG (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl Spectrosc 35, 271-276.</Citation>
</Reference>
<Reference>
<Citation>Qi W, Li J, Chain CY, Pasquevich GA, Pasquevich AF & Cowan JA (2012) Glutathione complexed Fe-S centers. J Am Chem Soc 134, 10745-10748.</Citation>
</Reference>
<Reference>
<Citation>Kuzmic P (1996) Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal Biochem 237, 260-273.</Citation>
</Reference>
<Reference>
<Citation>Mapolelo DT, Zhang B, Randeniya S, Albetel AN, Li H, Couturier J, Outten CE, Rouhier N & Johnson MK (2013) Monothiol glutaredoxins and A-type proteins: partners in Fe-S cluster trafficking. Dalton Trans 42, 3107-3115.</Citation>
</Reference>
<Reference>
<Citation>Gao H, Subramanian S, Couturier J, Naik SG, Kim SK, Leustek T, Knaff DB, Wu HC, Vignols F, Huynh BH et al. (2013) Arabidopsis thaliana Nfu2 accommodates [2Fe-2S] or [4Fe-4S] clusters and is competent for in vitro maturation of chloroplast [2Fe-2S] and [4Fe-4S] cluster-containing proteins. Biochemistry 52, 6633-6645.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Sen, Sambuddha" sort="Sen, Sambuddha" uniqKey="Sen S" first="Sambuddha" last="Sen">Sambuddha Sen</name>
</region>
<name sortKey="Cowan, James A" sort="Cowan, James A" uniqKey="Cowan J" first="James A" last="Cowan">James A. Cowan</name>
<name sortKey="Hendricks, Amber L" sort="Hendricks, Amber L" uniqKey="Hendricks A" first="Amber L" last="Hendricks">Amber L. Hendricks</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000086 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000086 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32542995
   |texte=   Cluster exchange reactivity of [2Fe-2S]-bridged heterodimeric BOLA1-GLRX5.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32542995" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020